The transcriptional regulator FleQ contributes to Pseudomonas aeruginosa biofilm formation by activating the expression and biosynthesis of matrix exopolysaccharides in a manner dependent on c-di-GMP. However, little is known about the role of FleQ in the antibiotic tolerance phenotype of P. aeruginosa biofilms. Inactivation of fleQ impaired biofilm formation and rendered biofilms susceptible to tobramycin and norfloxacin. The phenotypes were similar to biofilms inactivated in sagS encoding the orphan sensor SagS that promotes the switch from planktonic to biofilm growth via BfiSR and antibiotic tolerance via BrlR. While FleQ was found to contribute to biofilm formation independently of SagS and BfiSR, FleQ instead converged with SagS-dependent regulation at the level of BrlR. This was supported by multicopy expression of sagS failing to restore biofilm antibiotic tolerance by ÎfleQ to wild-type levels (and vice versa) and by biofilms formed by the ÎfleQÎsagS double mutant being as susceptible as ÎfleQ and ÎsagS biofilms. Increased antibiotic susceptibility was independent of BrlR abundance or BrlR DNA binding but coincided with significantly reduced transcript abundance of the BrlR-activated mexCD-oprJ and PA1874-77, encoding an ABC transporter previously shown to contribute to the tolerance of biofilms to tobramycin and norfloxacin. FleQ- dependent regulation of gene expression was indirect. Co-immunoprecipitation and BACTH assays indicated FleQ to interact with SagS via its HisKA-Rec domain, likely suggesting FleQ and SagS to likely work in concert to enable biofilm antibiotic tolerance, by finetuning the expression of BrlR activated genes.IMPORTANCEIn P. aeruginosa, FleQ inversely regulates the expression of genes encoding flagella and biofilm matrix components, including exopolysaccharide (Pel, Psl) in a manner dependent on the levels of c-di-GMP. Our findings expand on the role of FleQ from regulating the transition to the biofilm mode of growth to FleQ contributing to the antimicrobial tolerance phenotype of biofilms, by FleQ affecting the expression of PA1874-77, a downstream target of the SagS-dependent transcriptional regulator BrlR. Importantly, our findings suggest FleQ works in concert with SagS, likely via FleQ-SagS protein-protein interactions, to enable the formation of inherently tolerant P. aeruginosa biofilms.
FleQ finetunes the expression of a subset of BrlR-activated genes to enable antibiotic tolerance by Pseudomonas aeruginosa biofilms.
阅读:16
作者:Oladosu Victoria I, Sauer Karin
| 期刊: | Journal of Bacteriology | 影响因子: | 3.000 |
| 时间: | 2025 | 起止号: | 2025 May 22; 207(5):e0050324 |
| doi: | 10.1128/jb.00503-24 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
