Establishing learned associations between rewarding stimuli and the context under which those rewards are encountered is critical for survival. Hippocampal input to the nucleus accumbens (NAc) is a key connection involved in integrating environmental information and reward processing to facilitate goal-directed behaviors. This connection consists of two independent pathways originating from the dorsal (dHipp) or ventral (vHipp) hippocampus, which have previously been considered functionally and anatomically distinct. Here, we show overlap in dHipp and vHipp terminal fields in the NAc, which led us to reconsider this view and raise new questions regarding the potential interactions between dHipp and vHipp pathways in the NAc. Using optogenetics, electrophysiology, and transsynaptic labeling in adult male and female mice, we investigated anatomical and functional convergence of dHipp and vHipp in the NAc. We identified a subpopulation of dually innervated cells in the NAc medial shell where dHipp and vHipp inputs are located near one another along dendritic branches. We independently manipulated dHipp and vHipp inputs via two-color optogenetic manipulation during whole-cell electrophysiology recordings to confirm functional dual innervation of individual neurons and revealed heterosynaptic interactions between the two pathways. Altogether, these results demonstrate that dHipp and vHipp dually innervate a subset of neurons in the NAc, suggesting integration of these inputs at the level of individual neurons. Exploring the physiological and behavioral implications of this convergence will offer new insights into how individual neurons incorporate information from distinct inputs and how this integration may shape learning.
Heterosynaptic interactions between dorsal and ventral hippocampus in individual medium spiny neurons of the nucleus accumbens ventromedial shell.
阅读:16
作者:Copenhaver Ashley E, Vance Sydnee, Snider Sarah A, Befano Kaela, LeGates Tara A
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 Jun 23 |
| doi: | 10.1101/2025.06.23.661109 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
