Proteases regulate important biological functions. Here we present the structural and functional characterization of three previously uncharacterized aspartic proteases in Pseudomonas aeruginosa. We show that these proteases have structural hallmarks of retropepsin peptidases and play redundant roles for cell survival under hypoosmotic stress conditions. Consequently, we named them retropepsin-like osmotic stress tolerance peptidases (Rlo). Our research shows that while Rlo proteases are homologous to RimB, an aspartic peptidase involved in rhizosphere colonization and plant infection, they contain N-terminal signal peptides and perform distinct biological functions. Mutants lacking all three secreted Rlo peptidases show defects in antibiotic resistance, biofilm formation, and cell morphology. These defects are rescued by mutations in the inactive transglutaminase transmembrane protein RloB and the cytoplasmic ATP-grasp protein RloC, two previously uncharacterized genes in the same operon as one of the Rlo proteases. These studies identify Rlo proteases and rlo operon products as critical factors in clinically relevant processes, making them appealing targets for therapeutic strategies against Pseudomonas infections.
Secreted retropepsin-like enzymes are essential for stress tolerance and biofilm formation in Pseudomonas aeruginosa.
阅读:4
作者:Lormand Justin D, Savelle Charles H, Teschler Jennifer K, López Eva, Little Richard H, Malone Jacob G, Yildiz Fitnat H, GarcÃa-GarcÃa MarÃa J, Sondermann Holger
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 Apr 6 |
| doi: | 10.1101/2025.03.18.643919 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
