SAVANA: reliable analysis of somatic structural variants and copy number aberrations using long-read sequencing

SAVANA:利用长读长测序技术对体细胞结构变异和拷贝数异常进行可靠分析

阅读:3
作者:Hillary Elrick # ,Carolin M Sauer # ,Jose Espejo Valle-Inclan ,Katherine Trevers ,Melanie Tanguy ,Sonia Zumalave ,Solange De Noon ,Francesc Muyas ,Rita Cascão ,Angela Afonso ,Alistair G Rust ,Fernanda Amary ,Roberto Tirabosco ,Adam Giess ,Timothy Freeman ,Alona Sosinsky ,Katherine Piculell ,David T Miller ,Claudia C Faria ,Greg Elgar ,Adrienne M Flanagan ,Isidro Cortes-Ciriano
Accurate detection of somatic structural variants (SVs) and somatic copy number aberrations (SCNAs) is critical to study the mutational processes underpinning cancer evolution. Here we describe SAVANA, an algorithm designed to detect somatic SVs and SCNAs at single-haplotype resolution and estimate tumor purity and ploidy using long-read sequencing data with or without a germline control sample. We also establish best practices for benchmarking SV detection algorithms across the entire genome in a data-driven manner using replication and read-backed phasing analysis. Through the analysis of matched Illumina and nanopore whole-genome sequencing data for 99 human tumor-normal pairs, we show that SAVANA has significantly higher sensitivity and 13- and 82-times-higher specificity than the second and third-best performing algorithms. Moreover, SVs reported by SAVANA are highly consistent with those detected using short-read sequencing. In summary, SAVANA enables the application of long-read sequencing to detect SVs and SCNAs reliably.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。