Long-read genome sequencing and variant reanalysis increase diagnostic yield in neurodevelopmental disorders

长读长基因组测序和变异重分析提高了神经发育障碍的诊断率

阅读:4
作者:Susan M Hiatt ,James M J Lawlor ,Lori H Handley ,Donald R Latner ,Zachary T Bonnstetter ,Candice R Finnila ,Michelle L Thompson ,Lori Beth Boston ,Melissa Williams ,Ivan Rodriguez Nunez ,Jerry Jenkins ,Whitley V Kelley ,E Martina Bebin ,Michael A Lopez ,Anna C E Hurst ,Bruce R Korf ,Jeremy Schmutz ,Jane Grimwood ,Gregory M Cooper

Abstract

Variant detection from long-read genome sequencing (lrGS) has proven to be more accurate and comprehensive than variant detection from short-read genome sequencing (srGS). However, the rate at which lrGS can increase molecular diagnostic yield for rare disease is not yet precisely characterized. We performed lrGS using Pacific Biosciences "HiFi" technology on 96 short-read-negative probands with rare diseases that were suspected to be genetic. We generated hg38-aligned variants and de novo phased genome assemblies, and subsequently annotated, filtered, and curated variants using clinical standards. New disease-relevant or potentially relevant genetic findings were identified in 16/96 (16.7%) probands, nine of which (8/96, ∼9.4%) harbored pathogenic or likely pathogenic variants. Nine probands (∼9.4%) had variants that were accurately called in both srGS and lrGS and represent changes to clinical interpretation, mostly from recently published gene-disease associations. Seven cases included variants that were only correctly interpreted in lrGS, including copy-number variants (CNVs), an inversion, a mobile element insertion, two low-complexity repeat expansions, and a 1 bp deletion. While evidence for each of these variants is, in retrospect, visible in srGS, they were either not called within srGS data, were represented by calls with incorrect sizes or structures, or failed quality control and filtration. Thus, while reanalysis of older srGS data clearly increases diagnostic yield, we find that lrGS allows for substantial additional yield (7/96, 7.3%) beyond srGS. We anticipate that as lrGS analysis improves, and as lrGS data sets grow allowing for better variant-frequency annotation, the additional lrGS-only rare disease yield will grow over time.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。