Non-tuberculous mycobacteria enhance the tryptophan-kynurenine pathway to induce immunosuppression and facilitate pulmonary colonization.

阅读:3
作者:Li Longjie, Shao Jiaofang, Tong Chunran, Gao Weiwei, Pan Pan, Qi Chen, Gao Chenxi, Zhang Yunlei, Zhu Ying, Chen Cheng
The increasing prevalence of non-tuberculous mycobacterium (NTM) infections alongside tuberculosis (TB) underscores a pressing public health challenge. Yet, the mechanisms governing their infection within the lung remain poorly understood. Here, we integrate metagenomic sequencing, metabolomic sequencing, machine learning classifiers, SparCC, and MetOrigin methods to profile bronchoalveolar lavage fluid (BALF) samples from NTM/TB patients. Our aim is to unravel the intricate interplay between lung microbial communities and NTM/Mycobacterium tuberculosis infections. Our investigation reveals a discernible reduction in the compositional diversity of the lung microbiota and a diminished degree of mutual interaction concomitant with NTM/TB infections. Notably, NTM patients exhibit a distinct microbial community characterized by marked specialization and notable enrichment of Pseudomonas aeruginosa and Staphylococcus aureus, driving pronounced niche specialization for NTM infection. Simultaneously, these microbial shifts significantly disrupt tryptophan metabolism in NTM infection, leading to an elevation of kynurenine. Mycobacterium intracellulare, Mycobacterium paraintracellulare, Mycobacterium abscessus, and Pseudomonas aeruginosa have been implicated in the metabolic pathways associated with the conversion of indole to tryptophan via tryptophan synthase within NTM patients. Additionally, indoleamine-2,3-dioxygenase converts tryptophan into kynurenine, fostering an immunosuppressive milieu during NTM infection. This strategic modulation supports microbial persistence, enabling evasion from immune surveillance and perpetuating a protracted state of NTM infection. The elucidation of these nuanced microbial and metabolic dynamics provides a profound understanding of the intricate processes underlying NTM and TB infections, offering potential avenues for therapeutic intervention and management.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。