The chemosynthetic biofilm microbiome of deep-sea hydrothermal vents across space and time

深海热液喷口化能合成生物膜微生物群落的时空分布

阅读:3
作者:Ashley Grosche # ,Matteo Selci # ,Francesco Smedile ,Donato Giovannelli ,Sara Borin ,Nadine Le Bris ,Costantino Vetriani
Microbial biofilms colonize mineral and biological substrates exposed to fluid circulation at deep-sea hydrothermal vents, providing a biologically active interface along redox boundaries. Since many biofilms at deep-sea vents are associated with invertebrates, microbial distribution and abundance are not only constrained by local fluid geochemistry, but also through host-microbe interactions. This study examined the spatial distribution and diversity of established microbial biofilm communities collected from three distinct biological regimes characteristic of the East Pacific Rise (9°50 N, 104°17 W) vent system, as well as newly established biofilms on experimental microbial colonization devices. Transcripts from 16S rRNA-based amplicon sequencing revealed that Campylobacterota of the Sulfurimonas and Sulfurovum genera dominated newly-formed biofilms across all biological regimes. Statistical analyses using environmental chemistry data from each sampling site suggest that community composition is significantly impacted by biofilm age, temperature and sulfide concentration ranges, and to a lesser extent, locality. Further, metatranscriptomic analyses were used to investigate changes in community gene expression between seafloor and subseafloor biofilms. Our findings revealed differences in the type and abundance of transcripts related to respiratory pathways, carbon fixation and reactive oxygen species (ROS) detoxification. Overall, this study provides a novel conceptual framework for evaluating biofilm structure and function at deep-sea vents by showing a transition from a niche-specific pioneer microbial community in newly-formed biofilms, to a complex population of increased diversity in established biofilms and by identifying key changes in gene expression in taxonomically similar biofilms during the transition from the shallow subseafloor to the seafloor.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。