Molecular mechanisms of re-emerging chloramphenicol susceptibility in extended-spectrum beta-lactamase-producing Enterobacterales.

阅读:4
作者:Graf Fabrice E, Goodman Richard N, Gallichan Sarah, Forrest Sally, Picton-Barlow Esther, Fraser Alice J, Phan Minh-Duy, Mphasa Madalitso, Hubbard Alasdair T M, Musicha Patrick, Schembri Mark A, Roberts Adam P, Edwards Thomas, Lewis Joseph M, Feasey Nicholas A
Infections with Enterobacterales (E) are increasingly difficult to treat due to antimicrobial resistance. After ceftriaxone replaced chloramphenicol (CHL) as empiric therapy for suspected sepsis in Malawi in 2004, extended-spectrum beta-lactamase (ESBL)-E rapidly emerged. Concurrently, resistance to CHL in Escherichia coli and Klebsiella spp. decreased, raising the possibility of CHL re-introduction. However, many phenotypically susceptible isolates still carry CHL acetyltransferase (cat) genes. To understand the molecular mechanisms and stability of this re-emerging CHL susceptibility we use a combination of genomics, phenotypic susceptibility assays, experimental evolution, and functional assays for CAT activity. Here, we show that of 840 Malawian E. coli and Klebsiella spp. isolates, 31% have discordant CHL susceptibility genotype-phenotype, and we select a subset of 42 isolates for in-depth analysis. Stable degradation of cat genes by insertion sequences leads to re-emergence of CHL susceptibility. Our study suggests that CHL could be reintroduced as a reserve agent for critically ill patients with ESBL-E infections in Malawi and similar settings and highlights the ongoing challenges in inferring antimicrobial resistance from sequence data.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。