Identification of a Biosynthetic Gene Cluster for the Production of the Blue-Green Pigment Xylindein by the Fungus Chlorociboria aeruginascens.

阅读:14
作者:Guo Yanfang, Navarro-Muñoz Jorge, Rodenbach Caroline, Dwars Elske, Dieleman Chendo, van den Hout Bart, Sanders Bazante, Zhou Miaomiao, Arogunjo Ayodele, Cox Russell J, Driessen Arnold J M, Collemare Jérôme
Xylindein is a blue-green pigment produced by the fungi Chlorociboria aeruginascens and Chlorociboria aeruginosa. Its stunning color and optoelectronic properties make xylindein valuable for textiles and as a natural semiconductor material. However, producing xylindein from culture broths remains challenging because of the slow growth of the Chlorociboria species and the poor solubility of xylindein in organic solvents. An alternative production route for obtaining pure xylindein is heterologous expression of the xylindein biosynthetic genes. Here, we resequenced the genome of C. aeruginascens and C. aeruginosa, and subsequent genome mining and phylogenetic dereplication identified a unique candidate biosynthetic gene cluster with a nonreducing polyketide synthase (nrPKS). RNA sequencing during xylindein production revealed that the core gene XLNpks is co-regulated with eight other genes at the locus. Among those, XLNfas1 and XLNfas2 encode a putative fatty acid synthase, which likely provides the starter unit to XLNpks. Attempts to heterologously express in Aspergillus oryzae XLNpks alone or in combination with XLNfas1 and XLNfas2 did not yield any intermediate, but expression of the closely related viriditoxin nrPKS (VdtA) produced the expected intermediate. Based on our results, we propose a biosynthetic route to xylindein and suggest that the obtained A. oryzae transformants open ways to further study xylindein biosynthesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。