To better understand the molecular mechanism that drives neuroinflammation, we analyzed the protein profiles of 27 brains from HIV with HIV (PWH) on antiretroviral therapy (ART), including various stages of HIV-associated neurocognitive disorders (HAND), and compared them to 9 HAND-negative controls. We found that most of the proteins that were increased-about 66.7%-were involved in immune response pathways. Of these, 23.3% were specifically related to type I interferon (IFN-I) signaling, which remains active in the brain through both HIV-related and unrelated mechanisms. Using single-cell RNA sequencing (scRNA-seq) on brain tissues collected during rapid autopsies from participants in the Last Gift cohort, we found that IFN-I signaling was especially strong in astrocytes, microglia (MG), and endothelial cells. In a mini-brain organoid model of acute HIV infection, IFN-I signaling was also highly active in astrocytes but less so in MG. Interestingly, IFN-I activation can happen without HIV being present-expression of human endogenous retrovirus-W1 (HERV-W1) Env can directly trigger this response in astrocytes, and it continues in glial cells even with effective ART. Together, our findings point to persistent IFN-I activation in glial and endothelial cells in the brain, which may contribute to neuroinflammation and cognitive disorders in PWH on ART.
Persistent type I interferon signaling within the brain of people with HIV on ART with cognitive impairment.
阅读:6
作者:Tang Yuyang, Xie Ling, Shabangu Ciniso Sylvester, Li Dajiang, da Silva Prates Gabriela, Manickam Ashokkumar, Wong Lilly M, Chaillon Antoine, Browne Edward P, Gianella Sara, Ho Wenzhe, Margolis David M, Chen Xian, Hu Wenhui, Jiang Guochun
| 期刊: | PLoS Pathogens | 影响因子: | 4.900 |
| 时间: | 2025 | 起止号: | 2025 Aug 20; 21(8):e1013411 |
| doi: | 10.1371/journal.ppat.1013411 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
