Comparison of current methods for genome-wide DNA methylation profiling.

阅读:4
作者:de Abreu Ana Regina, Ibrahim Joe, Lemonidis Vasileios, Mateiu Ligia, Van Camp Guy, Op de Beeck Ken
BACKGROUND: DNA methylation is an epigenetic mechanism involved in gene regulation and cellular differentiation. Accurate and comprehensive assessment of DNA methylation patterns is thus essential for understanding their role in various biological processes and disease mechanisms. Bisulfite sequencing has long been the default method for analyzing methylation marks due to its single-base resolution, but the associated DNA degradation poses a concern. Although several methods have been proposed to circumvent this issue, there is no clear consensus on which method might be better suited for specific study designs. RESULTS: We conducted a comparative evaluation of four DNA methylation detection approaches: whole-genome bisulfite sequencing (WGBS), Illumina methylation microarray (EPIC), enzymatic methyl-sequencing (EM-seq) and third-generation sequencing by Oxford Nanopore Technologies (ONT). DNA methylation profiles were assessed across three human genome samples derived from tissue, cell line, and whole blood. We systematically compared these methods in terms of resolution, genomic coverage, methylation calling accuracy, cost, time, and practical implementation. EM-seq showed the highest concordance with WGBS, indicating strong reliability due to their similar sequencing chemistry. ONT sequencing, while showing lower agreement with WGBS and EM-seq, captured certain loci uniquely and enabled methylation detection in challenging genomic regions. Despite a substantial overlap in CpG detection among methods, each method identified unique CpG sites, emphasizing their complementary nature. CONCLUSIONS: Our findings underscore the strengths and limitations of current DNA methylation detection methods. EM-seq and ONT emerge as robust alternatives to WGBS and EPIC, offering unique advantages: EM-seq delivers consistent and uniform coverage, while ONT excels in long-range methylation profiling and access to challenging genomic regions. These insights provide practical guidance for method selection based on specific experimental goals.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。