Identification of a key nucleotide influencing Cas12a crRNA activity for universal photo-controlled CRISPR diagnostics.

阅读:12
作者:Tian Tian, Xiao Hongrui, Guo Xinyi, Chen Yuxin, Qiu Zhiqiang, Zhang Ting, Chen Meiyu, Qi Weiwei, Cai Peige, Cheng Meng, Zhou Xiaoming
Developing a one-pot assay is a critical strategy for enhancing the applicability of CRISPR-based molecular diagnostics; however, it is hindered by CRISPR cleavage interfering with nucleic acid amplification templates. Photo-regulation strategies provide an ideal solution to suppress undesired CRISPR cleavage while maintaining detection efficiency. However, existing photo-controlled CRISPR diagnostic methods face limitations in universality, cost, and detection efficiency. In this study, we systematically examine the impact of mutations in the repeat recognition sequence (RRS), a four-nucleotide segment within the Cas12a crRNA direct repeat (DR) region, on cleavage activity. We observe that mutations at positions 3 or 4 nearly abolished crRNA activity. Based on this discovery, we introduce 6-nitropiperonyloxymethyl (NPOM) photo-caging modifications at positions 3 and 4. Photo-caging at position 4 demonstrates the most effective suppression of enzymatic activity and optimal light-mediated activation. We leverage this finding to develop a photo-controlled CRISPR diagnostic method, enabling a universally adaptable one-pot detection strategy. Furthermore, by incorporating a crRNA splinting strategy, this pre-preparable reagent can be adapted for the detection of virtually any target gene.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。