A generative framework for enhanced cell-type specificity in rationally designed mRNAs.

阅读:10
作者:Khoroshkin Matvei, Zinkevich Arsenii, Aristova Elizaveta, Yousefi Hassan, Lee Sean B, Mittmann Tabea, Manegold Karoline, Penzar Dmitry, Raleigh David R, Kulakovskiy Ivan V, Goodarzi Hani
mRNA delivery offers new opportunities for disease treatment by directing cells to produce therapeutic proteins. However, designing highly stable mRNAs with programmable cell type-specificity remains a challenge. To address this, we measured the regulatory activity of 60,000 5' and 3' untranslated regions (UTRs) across six cell types and developed PARADE (Prediction And RAtional DEsign of mRNA UTRs), a generative AI framework to engineer untranslated RNA regions with tailored cell type-specific activity. We validated PARADE by testing 15,800 de novo-designed sequences across these cell lines and identified many sequences that demonstrated superior specificity and activity compared to existing RNA therapeutics. mRNAs with PARADE-engineered UTRs also exhibited robust tissue-specific activity in animal models, achieving selective expression in the liver and spleen. We also leveraged PARADE to enhance mRNA stability, significantly increasing protein output and therapeutic durability in vivo. These advancements translated to notable increases in therapeutic efficacy, as PARADE-designed UTRs in oncosuppressor mRNAs, namely PTEN and P16, effectively reduced tumor growth in patient-derived neuroglioma xenograft models and orthotopic mouse models. Collectively, these findings establish PARADE as a versatile platform for designing safer, more precise, and highly stable mRNA therapies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。