Optimizing PH Domain-Based Biosensors for Improved Plasma Membrane PIP(3) Measurements in Mammalian Cells.

阅读:4
作者:Damouni Amir, Tóth Dániel J, Schönek Aletta, Kasbary Alexander, Boros Adél P, Várnai Péter
Phosphoinositide-binding pleckstrin homology (PH) domains interact with both phospholipids and proteins, often complicating their use as specific lipid biosensors. In this study, we introduced specific mutations into the phosphatidylinositol 3,4,5-trisphosphate (PIP(3))-specific PH domains of protein kinase B (Akt) and general receptor for phosphoinositides 1 (GRP1) that disrupt protein-mediated interactions while preserving lipid binding, in order to enhance biosensor specificity for PIP(3), and evaluated their impact on plasma membrane (PM) localization and lipid-tracking ability. Using bioluminescence resonance energy transfer (BRET) and confocal microscopy, we assessed the localization of PH domains in HEK293A cells under different conditions. While Akt-PH mutants showed minimal deviations from the wild type, GRP1-PH mutants exhibited significantly reduced PM localization both at baseline and after stimulation with epidermal growth factor (EGF), insulin, or vanadate. We further developed tandem mutant GRP1-PH domain constructs to enhance PM PIP(3) avidity. Additionally, our investigation into the influence of ADP ribosylation factor 6 (Arf6) activity on GRP1-PH-based biosensors revealed that while the wild-type sensors were Arf6- dependent, the mutants operated independently of Arf6 activity level. These optimized GRP1-PH constructs provide a refined biosensor system for accurate and selective detection of dynamic PIP(3) signaling, expanding the toolkit for dissecting phosphoinositide-mediated pathways.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。