Two simple and easily reproducible methods for the immobilization of β-galactosidase (β-gal) from Aspergillus oryzae on electrospun gelatin nanofiber mats (GFM) were developed. The process was optimized regarding the electrospinning solvent system and the subsequent cross-linking of GFM in order to increase their stability in water. β-Gal was covalently immobilized on activated gelatin nanofiber mats with hexamethylenediamine (HMDA) as a bifunctional linker and secondly via entrapment into the gelatin nanofibers during the electrospinning process (suspension electrospinning). Optimal immobilization parameters for covalent immobilization were determined to be at pH 7.5, 40 °C, β-gal concentration of 1 mg/mL and immobilization time of 24.5 h. For suspension electrospinning, the optimal immobilization parameters were identified at pH 4.5 and β-gal concentration of 0.027 wt.% in the electrospinning solution. The pH and temperature optima of immobilized β-gal shifted from 30 °C, pH 4.5 (free enzyme) to pH 3.5, 50 °C (covalent immobilization) and pH 3.5, 40 °C (suspension electrospinning). Striking differences in the Michaelis constant (K(M)) of immobilized β-gal compared with free enzyme were observed with a reduction of K(M) up to 50% for immobilized enzyme. The maximum velocity (v(max)) of immobilization by suspension electrospinning was almost 20 times higher than that of covalent immobilization. The maximum GOS yield for free β-gal was found to be 27.7% and 31% for immobilized β-gal.
Immobilization of β-Galactosidase From Aspergillus oryzae on Electrospun Gelatin Nanofiber Mats for the Production of Galactooligosaccharides.
阅读:7
作者:Sass Ann-Cathérine, Jördening Hans-Joachim
| 期刊: | Applied Biochemistry and Biotechnology | 影响因子: | 3.300 |
| 时间: | 2020 | 起止号: | 2020 Jul;191(3):1155-1170 |
| doi: | 10.1007/s12010-020-03252-7 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
