Mitogen-Activated Protein Kinase Kinase Kinase 1 Overexpression Disrupts Development of the Ocular Surface Epithelium.

阅读:3
作者:Mongan Maureen, Xiao Bo, Christianto Antonius, Hu Yueh-Chiang, Xia Ying
Mitogen-Activated Protein Kinase Kinase Kinase 1 (MAP3K1) is a key signaling molecule essential for eyelid closure during embryogenesis. In mice, Map3k1 knockout leads to a fully penetrant eye-open at birth (EOB) phenotype due to disrupted MAPK signaling, abnormal epithelial differentiation, and morphogenesis. To further explore the roles of MAP3K1 in ocular development, we generated a Cre-inducible gain-of-function transgenic mouse, designated as Map3k1(TG), and crossed it with Lens epithelial (Le)-Cre mice to drive MAP3K1 overexpression in developing ocular surface epithelium (OSE). Map3k1(TG);Le-Cre embryos exhibited ocular defects including premature eyelid closure, lens degeneration, and corneal edema. While corneal epithelial differentiation remained intact, the lens epithelium degenerated with lens formation compromised. Eyelid epithelium was markedly thickened, containing cells with aberrant keratin (K)14/K10 co-expression. Genetic rescue experiments revealed that Map3k1(TG);Le-Cre restored eyelid closure in Map3k1 knockout mice, whereas MAP3K1 deficiency attenuated the epithelial thickening caused by transgene expression. Mechanistically, MAP3K1 overexpression enhanced c-Jun phosphorylation in vivo and activated JNK-c-Jun, WNT, TGFβ, and Notch signaling and promoted keratinocyte proliferation and migration in vitro. These findings highlight a dose-sensitive role for MAP3K1 in regulating epithelial proliferation, differentiation, and morphogenesis during eyelid development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。