During origin licensing, the origin recognition complex (ORC) loads two Mcm2-7 helicases onto DNA in a head-to-head conformation, establishing the foundation for subsequent bidirectional replication. Single-molecule experiments support a helicase-loading model in which one ORC loads both Mcm2-7 helicases at origins. For this to occur, ORC must release from its initial Mcm2-7 and DNA binding sites, flip over the helicase, and bind the opposite end of the Mcm2-7 complex and adjacent DNA to form the MO complex. Importantly, this binding-site transition occurs without ORC releasing into solution. Using a single-molecule FRET assay, we show that the N-terminal half of Orc6 tethers ORC to the N-terminal tier of Mcm2-7 (Mcm2-7N) during ORC's binding-site transition. This interaction involves both the folded Orc6 N-terminal domain (Orc6N) and the adjacent unstructured linker and forms before ORC releases from its initial Mcm2-7 interaction. The absence of this interaction increases the rate of ORC release into solution, consistent with a tethering function. CDK phosphorylation of ORC inhibits the tethering interaction, providing a mechanism for the known CDK inhibition of MO complex formation. Interestingly, we identify mutations in the Orc6 linker region that support MO complex formation but prevent double-hexamer formation by inhibiting stable second Mcm2-7 recruitment. Our study provides a molecular explanation for a one-ORC mechanism of helicase loading and demonstrates that Orc6 is involved in multiple stages of origin licensing.
An Orc6 tether mediates ORC binding site switching during replication origin licensing.
阅读:9
作者:Driscoll David, Friedman Larry J, Gelles Jeff, Bell Stephen P
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 May 13 |
| doi: | 10.1101/2025.05.09.652650 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
