The gold standard assay for radiation response is the clonogenic assay, a normalized colony formation assay (CFA) that can capture a broad range of radiation-induced cell death mechanisms. Traditionally, this assay relies on two-dimensional (2D) cell culture conditions with colonies counted by fixing and staining protocols. While some groups have converted these to three-dimensional (3D) conditions, these models still utilize 2D-like media compositions containing serum that are incompatible with stem-like cell models such as brain tumor initiating cells (BTICs) that form self-aggregating spheroids in neural stem cell media. BTICs are the preferred patient-derived model system for studying glioblastoma (GBM) as they tend to better retain molecular and phenotypic characteristics of the original tumor tissue. As such, it is important that preclinical radiation studies should be adapted to BTIC conditions. In this study, we describe a series of experimental approaches for performing CFA experiments with BTIC cultures. Our results indicate that serum-free clonogenic assays are feasible for combination drug and radiation testing and may better facilitate translatability of preclinical findings.
A High-Throughput Neurosphere-Based Colony Formation Assay to Test Drug and Radiation Sensitivity of Different Patient-Derived Glioblastoma Lines.
阅读:3
作者:Kumar Manoj, Nassour-Caswell Lauren C, Alrefai Hasan, Anderson Joshua C, Schanel Taylor L, Hicks Patricia H, Cardan Rex, Willey Christopher D
| 期刊: | Cells | 影响因子: | 5.200 |
| 时间: | 2024 | 起止号: | 2024 Dec 3; 13(23):1995 |
| doi: | 10.3390/cells13231995 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
