In the context of transdermal delivery, favoring the drug permeability of epithelia through convenient formulations would open new opportunities for local versus systemic drug delivery, envisaging higher patient comfort and an enhanced therapeutic effect. Ligands of tight junctions are interesting agents that enhance epithelial permeability by relaxing the protein complexes that form them. The C-terminal domain of Clostridium perfringens enterotoxin (c-CPE), which binds claudins, one of the tight junction (TJ) components, has been explored here as a functional domain in modular recombinant proteins, to evaluate its ability to self-promote its paracellular epithelial passage in a Caco-2 cell monolayer model. c-CPE-containing fusion proteins bind cells in the absence of internalization and cytotoxicity and support the passage, in trans, of other fusion proteins devoid of c-CPE. However, c-CPE-carrying proteins fail to cross the epithelia by themselves, probably because their affinity for TJs immobilizes them in the intercellular space. Therefore, while recombinant c-CPE versions have been here confirmed as convenient epithelial-permeabilizing agents, a paradoxical behavior has been observed where this effect is only successful when applied in trans, specifically on entities that lack c-CPE. Then, c-CPE itself inhibits the paracellular mobility of carrier molecules, not being suited as a self-driver (in c-CPE-drug complexes) for drug delivery through epithelia.
Trans-Mediated, Cis-Inhibited Paradoxal Activity of Clostridium perfringens Enterotoxin (c-CPE) in Modulating Epithelial Permeability.
阅读:16
作者:Sanchez Julieta M, Favaro Marianna T P, López-Laguna Hèctor, Parladé Eloi, Di Somma Angela, Casanova Isolda, Unzueta Ugutz, Mangues Ramón, Vazquez Esther, Voltà -Durán Eric, Villaverde Antonio
| 期刊: | Molecular Pharmaceutics | 影响因子: | 4.500 |
| 时间: | 2025 | 起止号: | 2025 Apr 7; 22(4):1973-1982 |
| doi: | 10.1021/acs.molpharmaceut.4c01205 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
