The calcium cation is a crucial signaling molecule involved in numerous cellular pathways. Beyond its role as a messenger or modulator in intracellular cascades, calcium's function in excitable cells, including nerve impulse transmission, is remarkable. The central role of calcium in nervous activity has driven the rapid development of fluorescent techniques for monitoring this cation in living cells. Specifically, genetically encoded calcium indicators (GECIs) are the most in-demand molecular tools in their class. In this work, we address two issues of calcium imaging by designing indicators based on the successful GCaMP6 backbone and the fluorescent protein BrUSLEE. The first indicator variant (GCaMP6s-BrUS), with a reduced, calcium-insensitive fluorescence lifetime, has potential in monitoring calcium dynamics with a high temporal resolution in combination with advanced microscopy techniques, such as light beads microscopy, where the fluorescence lifetime limits acquisition speed. Conversely, the second variant (GCaMP6s-BrUS-145), with a flexible, calcium-sensitive fluorescence lifetime, is relevant for static measurements, particularly for determining absolute calcium concentration values using fluorescence lifetime imaging microscopy (FLIM). To identify the structural determinants of calcium sensitivity in these indicator variants, we determine their spatial structures. A comparative structural analysis allowed the optimization of the GCaMP6s-BrUS construct, resulting in an indicator variant combining calcium-sensitive behavior in the time domain and enhanced molecular brightness. Our data may serve as a starting point for further engineering efforts towards improved GECI variants with fine-tuned fluorescence lifetimes.
Calcium Indicators with Fluorescence Lifetime-Based Signal Readout: A Structure-Function Study.
阅读:3
作者:Simonyan Tatiana R, Varfolomeeva Larisa A, Mamontova Anastasia V, Kotlobay Alexey A, Gorokhovatsky Andrey Y, Bogdanov Alexey M, Boyko Konstantin M
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2024 | 起止号: | 2024 Nov 21; 25(23):12493 |
| doi: | 10.3390/ijms252312493 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
