Exopolysaccharides (EPS) play critical roles in microbial survival, stress adaptation, and biofilm formation across diverse environments. In food-associated bacteria such as Leuconostoc mesenteroides, understanding the regulation of EPS production under environmental stress is important for both spoilage control and industrial applications. However, the mechanisms linking cold stress to EPS biosynthesis remain poorly understood. Here, we show that sucrose and low temperature (8 °C) trigger a metabolic shift from dextran-only to combined dextran and levan biosynthesis in four meat-borne Leuc. mesenteroides strains. Two high EPS-producing strains (HEPRs) possess the sacB_1 gene, which encodes a previously uncharacterized levansucrase absent from low EPS-producing strains (LEPRs) that only carry the levS gene. This is the first study to describe the role of sacB_1 in cold-induced EPS production. Notably, sacB_1 was also identified in Leuc. mesenteroides strains isolated from plant-based fermentations such as kimchi and birch sap, but the HEPR strains analyzed here are the only known meat-derived isolates to carry this gene. Genomic analyses revealed highly conserved biosynthetic clusters for dextran, heteropolysaccharide, and levan. Gene expression profiling showed that levS and sacB_1 were upregulated at 8 °C, while dsrD expression was favoured at 25 °C. Cold-induced sucrose metabolism, characterized by high expression of levS, sacB_1, and dsrD, enhanced cell viability under oxidative stress. Furthermore, heterologous expression of sacB_1 in Leuc. mesenteroides and Lactococcus lactis improved resilience under cold and high-aeration conditions, confirming the protective role of levan. These findings advance the understanding of temperature-dependent EPS regulation in LAB and highlight sucrase diversity as a key factor in microbial adaptation to environmental stress.
Cold induced expression of a novel levansucrase gene sacB1 enhances exopolysaccharide production and stress resilience in Leuconostoc mesenteroides.
阅读:3
作者:Fernandez de Ullivarri Miguel, Buttimer Colin, Wijman Janneke, Heintz Eelco, Ross Paul, McCusker Matthew P, Hill Colin
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Jul 2; 15(1):22980 |
| doi: | 10.1038/s41598-025-04141-x | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
