Salinity is a major abiotic stress limiting cucumber (Cucumis sativus L.) production, especially in areas where saltwater intrusion is present and brackish water is used for irrigation. This study evaluated salinity tolerance in cucumber cultivars across three growth stages-germination, seedling, and vegetative-using various concentrations of brackish water ranging from 0 to 31 dS·m(-1). Germination results revealed distinct cultivar responses, with 'Diva' performing well and 'Striped Armenian' showing poor emergence. However, at the seedling and vegetative stages, 'Striped Armenian' consistently outperformed others under salinity stress, maintaining higher survival, shoot growth, and stress tolerance indices. In contrast, cultivars such as 'Diva' and 'H-19 Little Leaf' were more sensitive at later stages despite good early germination. Brackish water concentrations above 6 dS·m(-1) led to significant reductions in biomass and shoot traits, with complete seedling mortality observed at 22 dS·m(-1). At the vegetative stage, increasing salinity resulted in reduced shoot length, dry weight, and gas exchange parameters, including stomatal conductance, transpiration, photosynthesis, and intercellular carbon dioxide concentration. While intrinsic water use efficiency increased under severe stress, it did not consistently indicate overall tolerance. The contrasting performance of cultivars across stages underscores the complexity of salinity responses. Cultivar 'Striped Armenian' consistent resilience suggests its potential for use in areas where saltwater intrusion is a problem. These findings emphasize the importance of stage-specific screening and the integration of physiological traits to accurately identify salt-tolerant cultivars. This approach provides a reliable strategy for improving cucumber productivity under saline conditions and supports breeding efforts targeting stress-resilient varieties.
Growth stage-specific responses of cucumber to salinity stress: germination, seedling establishment, and vegetative development.
阅读:6
作者:Shaik Azeezahmed, Karthikeyan Raghupathy, Kousik Chandrasekar S
| 期刊: | Frontiers in Plant Science | 影响因子: | 4.800 |
| 时间: | 2025 | 起止号: | 2025 Aug 13; 16:1617809 |
| doi: | 10.3389/fpls.2025.1617809 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
