Effect of Exogenous Melatonin Supply on Potato Plants Grown In Vitro.

阅读:19
作者:Kun-Nemes Andrea, Farkas Dóra, Szilágyi-Tolnai Emese, Fazekas Mónika Éva, Paholcsek Melinda, Stündl László, Bíróné Molnár Piroska, Cziáky Zoltán, Dobránszki Judit, Remenyik Judit Gálné
Plant growth regulators of natural origin are becoming increasingly important in crop production to protect plants against various abiotic stresses and often to modulate plant pathological processes. These compounds offer the potential to enhance plant health exogenously by protecting plants against oxidative stress. Melatonin has been studied previously; however, the role of exogenous melatonin in abiotic stress tolerance and the underlying mechanisms are still less understood. In this study, potato plants were grown in vitro to study the effects of exogenous melatonin and ultrasound treatment (latter as an abiotic stress). The measured parameters included morphological data and the concentrations of melatonin and its degradation products, indole-3-acetic acid and salicylic acid, at 0 h, 24 h, 1 week, and 4 weeks after treatment. In addition, the expression levels of the genes responsible for the production of enzymes involved in melatonin synthesis were traced by RT-qPCR analysis. Melatonin added to the culture medium was taken up by the in vitro plantlets, and it participated both in the plant stress reaction and stress mitigation when an abiotic stress reaction was triggered by ultrasound. Among the degradation products, we detected N-acetyl-5-methoxykynuramine, 6-hydroxymelatonin, and 5-methoxytryptamine by UHPLC-MS. Among the enzymes involved in the synthesis of melatonin and indole-3-acetic acid, the expression levels of COMT, SNAT, TSB, TAA, ASMT, TPH, AANAT, ASMT, and TSA were measured and no pattern was observed in response to the treatments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。