Engineering gene expression dynamics via self-amplifying RNA with drug-responsive non-structural proteins.

阅读:15
作者:Yousefpour Parisa, Gregory Justin R, Si Kristen, Lonzaric Jan, Li Yingzhong, Wang Junmin, Qureshi Kashif, Ledbetter Amir, Lemnios Ashley A, Dye Jonathan, Remba Tanaka K, Yeung Rachel, Güereca Melissa, Rodriguez Linette, Zhang Yuebao, Wu Shengwei, Dong Yizhou, Weiss Ron, Irvine Darrell J
The design of gene therapies with drug-regulatable expression of therapeutic payloads is of interest for diverse applications. We hypothesized that a regulated expression system based on alphavirus-derived self-amplifying RNAs (saRNAs), which encode 4 non-structural proteins (nsPs) that copy the RNA backbone to enable sustained expression, would have advantages in safety and simplicity of delivery. Here we designed saRNAs where payload expression is regulated by the FDA-approved drug trimethoprim (TMP), by fusing TMP-responsive degradation domains (DDs) to nsPs to regulate RNA self-amplification. Screening a library of nsP-DD fusions, we identified an optimal design with DDs fused to nsP2, nsP3, and the payload, achieving a high fold-change in expression level in response to TMP and low expression in the off state. In mice, this saRNA circuit enabled diverse dynamic expression patterns in response to oral TMP. Implementing this circuit for controlled expression of an HIV antigen, an escalating TMP regimen significantly enhanced germinal center responses critical for B cell affinity maturation. This drug-regulated RNA technology holds potential for vaccines, immunotherapies, and gene therapies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。