Polyamine biosynthesis dysregulation in Alzheimer's disease and Down syndrome cellular models.

阅读:17
作者:Sola Andres, Sandberg Alex, Pham Caitlin, Revier Alexandra, Hebinck Mia, Penney Alexandra, Caviedes Pablo, Kumar Sunil, Granholm Ann-Charlotte, Linseman Daniel A, Paredes Daniel A
BACKGROUND: Individuals with Down Syndrome (DS) frequently develop early onset Alzheimer's disease (AD) with pathological hallmarks closely resembling AD due to several triplicated genes on chromosome 21. Polyamines are small, organic molecules that play a pivotal role for growth and differentiation, and a dysregulation of polyamine pathways is implicated in AD pathology. However, their role in DS-associated AD is unclear. METHODS: We analyzed polyamines and their metabolite levels in mouse hippocampal cells and human DS-AD and AD hippocampal tissue and assessed the effects of the ODC inhibitor difluoromethylornithine (DFMO) on Aβ42 aggregation and protein expression in DS fibroblasts. RESULTS: Amyloid-β42 increased polyamine levels via ornithine decarboxylase (ODC) activation in a dose-dependent manner. DFMO reduced Aβ42 aggregation, decreased amyloid precursor protein (APP) levels, and normalized proteins linked to AD pathology in DS fibroblasts. Polyamine levels were elevated in DS-AD hippocampal tissue, with colocalization of ODC and Aβ42 aggregates. CONCLUSION: These findings suggest that polyamine biosynthesis may exacerbate Aβ42 toxicity and APP expression, contributing to AD progression in DS. The ability of DFMO to reduce Aβ42 aggregation and restore protein homeostasis presents the polyamine pathway as a therapeutic target for DS-AD management.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。