Mass Spectrometry Imaging of Time-Dependently Photodegraded Light Stabilizers in Polyethylene Films Using Tapping-Mode Scanning Probe Electrospray Ionization.

阅读:11
作者:Akiyama Tsuyoshi, Otsuka Yoichi, Sun Mengze, Yamaguchi Shinichi, Toyoda Michisato
Light stabilizers are additives that are widely used to improve the lifespan and performance of polymer materials. To develop advanced polymer materials, analytical techniques investigate the degradation mechanisms and distribution of additives in polymers are crucial. Herein, two extraction-ionization methods were used: tapping-mode scanning probe electrospray ionization (t-SPESI) and liquid extraction surface analysis (LESA). The distribution and molecular structure of the photodegradation products were investigated using polyethylene films containing two types of oligomeric hindered amine light stabilizers (o-HALS). In addition, to study the relationship between light irradiation time and the relative amount of photodegradation products, we developed a method for preparing films with multiple photodegradation regions. Mass spectrometry imaging (MSI) using t-SPESI (t-SPESI-MSI) revealed that the signal intensities of HALS decreased with the time of light irradiation, and its degradation products progressively changed. Moreover, tandem mass spectrometry (MS/MS) using LESA (LESA-MS/MS) revealed that degradation products were generated by HALS fragmentation in the polymer film. By integrating these results, we propose multiple and stepwise reactions for the formation of the photodegradation products. Results indicate that the combined use of t-SPESI-MSI and LESA-MS/MS can directly analyze and understand the photodegradation mechanism of o-HALS in polymer materials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。