It is a considerable challenge to selectively recycle precious metals from industrial wastewater and natural waters. Herein, carbon aerogels embedded with magnetic Fe@FeS@C nanoparticles (CFeS aerogels) were constructed from natural carrageenan. The unique redox potential of FeS, coupled with the barrier effect and the electron conduction property of the carbon layer, made the Fe@FeS@C nanoparticles exhibited the ultra-high ion selectivity. The resultant CFeS aerogels can selectively adsorb and reduce trace Au(III), Ag(I), and Pd(II) ions at ppb level in an aqueous solution with 29 coexisting cations. Even if the concentration of competing metal ions is 100-fold higher than those of the precious metal ions, the selectivity for Au(III), Ag(I), and Pd(II) ions remained above 99.2%. Moreover, the 3D carbon network immobilizing the Fe@FeS@C nanoparticles prevented the aggregation and detachment of the recycled precious metals, thereby enhancing the adsorption rate and capacity. CFeS aerogels rapidly achieved adsorption equilibrium for Au(III), Ag(I), and Pd(II) ions in 5-10 min, and have the saturated adsorption capacities of 321.2 mg·g(-1), 150.6 mg·g(-1), and 70.1 mg·g(-1), respectively. Such aerogels with ultra-high selectivity, high efficiency, and easy separation provided a practical strategy for the enrichment and recovery of the precious metals.
Superior-Selective and Complete Recycling of Trace Precious Metals From Wastewater by Magnetic Trilayer Carbon-Aerogels.
阅读:5
作者:Yang Jianzheng, Zhou Yan, Du Shang, Wu Bing, Zhang Jianying, Song Shanjun, Zhou Tao, Zhang Jinming
| 期刊: | Advanced Science | 影响因子: | 14.100 |
| 时间: | 2025 | 起止号: | 2025 Aug;12(31):e00858 |
| doi: | 10.1002/advs.202500858 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
