The plant-beneficial fungus Trichoderma harzianum T22 modulates plant metabolism and negatively affects Nezara viridula.

阅读:6
作者:Van Hee Sara, Segurado Luchsinger Alejandro E, Cusumano Antonino, Masschelein Joleen, Jacquemyn Hans, Lievens Bart
BACKGROUND: Plant-beneficial fungi play an important role in enhancing plant health and resistance against biotic and abiotic stresses. Although extensive research has focused on their role in eliciting plant defences against pathogens, their contribution to induced resistance against herbivorous insects and the underlying mechanisms remain poorly understood. In this study, we used insect bioassays and untargeted metabolomics to investigate the impact of root inoculation of sweet pepper with the plant-beneficial fungus Trichoderma harzianum T22 on direct defence responses against the insect herbivore Nezara viridula. RESULTS: We observed reduced relative growth rate of N. viridula on leaves of fungus-inoculated plants, with no change in mortality. Untargeted metabolomic analyses revealed that inoculation with T. harzianum did not affect the leaf metabolome in the absence of herbivory five weeks after inoculation. However, compared to non-inoculated plants, inoculated plants exhibited significant metabolic alterations in herbivore-damaged leaves following N. viridula feeding, while changes in the metabolic profile of distant leaves were less pronounced. Notably, metabolites involved in the shikimate-phenylpropanoid pathway, known to be involved in plant defence responses, displayed higher accumulation in damaged leaves of inoculated plants compared to non-inoculated plants. CONCLUSION: Our results indicate that root inoculation with T. harzianum T22 affects plant defences against N. viridula, leading to reduced insect performance. Metabolite-level effects were primarily observed in damaged leaves, suggesting that the priming effect mainly results in localized metabolite accumulation at the site of attack. Future research should focus on identifying the detected compounds and determining their role in impairing N. viridula performance.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。