NOTCH pathway inactivation reprograms stem-like oral cancer cells to JAK-STAT dependent state and provides the opportunity of synthetic lethality.

阅读:6
作者:Ghosh Subhashis, Mitra Paromita, Saha Uday, Nandi Rimpa, Jena Subhashree, Ghosh Arnab, Roy Shantanu Saha, Acharya Moulinath, Biswas Nidhan Kumar, Singh Sandeep
BACKGROUND: We have recently provided the evidence of interconvertible cellular states, driving non-genetic heterogeneity among stem-like oral cancer cells (oral-SLCCs). Here, NOTCH pathway-activity status is explored as one of the possible mechanisms behind this stochastic plasticity. METHODS: Oral-SLCCs were enriched in 3D-spheroids. Constitutively-active and inactive status of NOTCH pathway was achieved by genetic or pharmacological approaches. RNA sequencing and real-time PCR was performed for gene expression studies. in vitro cytotoxicity assessments were performed by AlamarBlue assay and in vivo effects were studied by xenograft growth in zebrafish embryo. RESULTS: We have observed stochastic plasticity in oral-SLCCs, spontaneously maintaining both NOTCH-active and inactive states. While cisplatin refraction was associated with post-treatment adaptation to the active-state of NOTCH pathway, oral-SLCCs with inactive NOTCH pathway status showed aggressive tumor growth and poor prognosis. RNAseq analysis clearly suggested the upregulation of JAK-STAT pathway in NOTCH pathway-inactive subset. The 3D-spheroids with lower NOTCH-activity status displayed significantly higher sensitivity to JAK-selective drugs, Ruxolitinib or Tofacitinib or siRNA mediated downregulation of tested partners STAT3/4. Oral-SLCCs were programmed to adapt the inactive status of NOTCH pathway by exposing to γ-secretase inhibitors, LY411575 or RO4929097, followed by targeting with JAK-inhibitors, Ruxolitinib or Tofacitinib. This approach resulted in a very significant inhibition in viability of 3D-spheroids as well as xenograft initiation in Zebrafish embryos. CONCLUSION: Study revealed for the first time that NOTCH pathway-inactive state exhibit activation of JAK-STAT pathways, as synthetic lethal pair. Therefore, co-inhibition of these pathway may serve as novel therapeutic strategy against aggressive oral cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。