Developing efficient and simplified tools for multiplexed genome editing remains challenging due to limitations in precursor CRISPR RNA (pre-crRNA) processing and reliance on additional RNA-based regulatory components. Cas12i.3, a small RNA-guided nuclease, reportedly lacks pre-crRNA processing ability, restricting its multiplexing capability. Here, we engineered Cas12i.3 by optimizing CRISPR RNA (crRNA) design, codon usage, and exonuclease fusion, generating initial optimized Cas12i (IOCas12i) system. Further rational design and amino acid mutations yielded the highly efficient enhanced optimized Cas12i (EOCas12i) systems, EOCas12i-Combo1 and EOCas12i-Combo2, exhibiting 2.5- to 22.8-fold and 3.0- to 60.0-fold editing efficiencies relative to wild-type Cas12i.3, comparable to Streptococcus pyogenes Cas9 (SpCas9) and Lachnospiraceae bacterium Cas12a (LbCas12a). Additionally, they exhibited high specificity and produced longer insertions and deletions (indels) that may facilitate gene knockout. Notably, both variants enabled efficient multiplexed editing of up to 30 targets using compact crRNA arrays. These advancements position EOCas12i-Combo1 and EOCas12i-Combo2 as promising platforms for multiplexed genome editing applications.
An engineered CRISPR-Cas12i tool for efficient multiplexed genome editing.
阅读:12
作者:Wang Linli, Wang Yanlu, Chen Jian, Zhu Yaning, Qin Hao, Liu Jie, Ai Yue, Lai Jinsheng, Lian Zhengxing, Han Hongbing
| 期刊: | Nucleic Acids Research | 影响因子: | 13.100 |
| 时间: | 2025 | 起止号: | 2025 Aug 27; 53(16):gkaf806 |
| doi: | 10.1093/nar/gkaf806 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
