Decoding aging in the heart via single cell dual omics of non-cardiomyocytes.

阅读:14
作者:Song Yiran, Wang Li, Wang Haofei, Ma Hong, Xu Jun, Liu Jiandong, Qian Li
To understand heart aging at the single-cell level, we employed single-cell dual omics (scRNA-seq and scATAC-seq) in profiling non-myocytes (non-CMs) from young, middle-aged, and elderly mice. Non-CMs, vital in heart development, physiology, and pathology, are understudied compared to cardiomyocytes. Our analysis revealed aging response heterogeneity and its dynamics over time. Immune cells, notably macrophages and neutrophils, showed significant aging alterations, while endothelial cells displayed moderate changes. We identified distinct aging signatures within the cell type, including differential gene expression, transcription factor activity, and motif variation. Sub-cluster analysis revealed intra-cell type heterogeneity, characterized by diverse aging patterns. The senescence-associated secretory phenotype emerged as a key aging-related phenotype. Moreover, aging significantly influenced cell-cell communication, especially impacting a fibroblast sub-cluster with high expression of ERBB4. This study elucidates the complex cellular and molecular landscape of cardiac aging and offers guidance for potential therapeutic avenues to treat aging-related heart diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。