Natural aminosterols inhibit NMDA receptors with low nanomolar potency.

阅读:19
作者:Fani Giulia, Coppi Elisabetta, Errico Silvia, Cherchi Federica, Gennari Martina, Barbut Denise, Vendruscolo Michele, Zasloff Michael, Pugliese Anna Maria, Chiti Fabrizio
Abnormal functions of N-methyl-D-aspartate receptors (NMDARs) are associated with many brain disorders, making them primary targets for drug discovery. We show that natural aminosterols inhibit the NMDAR-mediated increase of intracellular calcium ions in cultured primary neurons and neuroblastoma cells. Structural comparison with known NMDAR-negative allosteric modulators, such as pregnanolone-sulfate-2 (PAS), raises the hypothesis that aminosterols have the same mechanism of action. Fluorescence resonance energy transfer (FRET) measurements using labeled NMDAR and the labeled aminosterol trodusquemine (TRO) indicate close spatial proximity, likely arising from binding. Other indirect yet plausible mechanisms for NMDAR inhibition by TRO were excluded. Electrophysiological patch clamp measurements on primary neurons indicate that pre-incubated TRO inhibits NMDA-induced ion currents with a IC(50) of 5 nm. Inhibition is observed only after cell membrane pre-adsorption, indicating accessibility to NMDAR from the cell membrane and binding to the transmembrane domains (TMDs) and TMD-ligand-binding domain (LBD) linkers, similarly to PAS. The TRO IC(50) is 5000-fold higher than that of PAS and 20-16 000 times higher than those of other inhibitors binding to TMD/TMD-LBD regions, identifying aminosterols as promising and potent NMDAR modulators.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。