Identification of a seasonal influenza vaccine-induced broadly protective neuraminidase antibody.

阅读:21
作者:Madsen Anders, Okba Nisreen M A, Pholcharee Tossapol, Matz Hanover C, Lv Huibin, Ibanez Trullen Maria, Zhou Julian Q, Turner Jackson S, Schmitz Aaron J, Han Fangjie, Horvath Stephen C, Malladi Sameer Kumar, Krammer Florian, Wu Nicholas C, Ellebedy Ali H
Seasonal influenza viruses cause significant global illness and death annually, and the potential spillover of avian H5N1 poses a serious pandemic threat. Traditional influenza vaccines target the variable hemagglutinin (HA) protein, necessitating annual vaccine updates, while the slower-evolving neuraminidase (NA) presents a promising target for broader protection. We investigated the breadth of anti-NA B cell responses to seasonal influenza vaccination in humans. We screened plasmablast-derived monoclonal antibodies (mAbs) from three donors, identifying 11 clonally distinct NA mAbs from 268 vaccine-specific mAbs. Among these, mAb-297 showed exceptionally broad NA inhibition, effectively protecting mice against lethal doses of influenza A and B viruses, including H5N1. We show that mAb-297 targets a common binding motif in the conserved NA active site. Our findings show that while B cell responses against NA following conventional, egg-derived influenza vaccines are rare, inducing broadly protective NA antibodies through such vaccination remains feasible, highlighting the importance of improving NA immunogens to develop a more broadly protective influenza vaccine.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。