Smith-Lemli-Opitz syndrome (SLOS) is a developmental disability arising from bi-allelic pathogenic variants in the 7-dehydrocholestrol reductase (DHCR7) enzyme and the accumulation of 7-dehydrocholesterol (7-DHC). 7-DHC spontaneously oxidizes and gives rise to cytotoxic oxysterols. Our recent high-throughput screening on Dhcr7-deficient Neuro2a cells identified hydroxyzine (HYZ) as a medication that could counteract the high levels of 7-DHC. We assessed the effects of HYZ in Dhcr7-deficient Neuro2a cells, neuronal cultures and glial cultures from Dhcr7(T93M/T93M) transgenic mice, and human dermal fibroblasts from patients with SLOS. LC-MS/MS biochemical analyses revealed a strong modulatory effect of HYZ on post-lanosterol biosynthesis across all four SLOS models. However, the HYZ-induced biochemical changes were complex, dose-dependent, and variable across the four SLOS models. Dhcr7-deficient Neuro2a cells showed decreased 7-DHC, 8-dehydrocholesterol (8-DHC), and desmosterol (DES) levels (all p < 0.01), while neuronal and glial cultures from Dhcr7(T93M/T93M) transgenic mice reported 8 significantly altered analytes (all p < 0.001). Human dermal fibroblast from patients with SLOS reacted to HYZ exposure with significantly decreased 7-DHC, 7-dehydrodesmosterol (7-DHD), and dihydrolanosterol (DHL) levels (p < 0.001), coupled with elevation in zymosterol (ZYM), zymostenol (ZYME), and 8-DHC (p < 0.001). Further evaluations are required to determine if the potentially beneficial effects of decreased 7-DHC, 7-DHD and DHL levels in SLOS models and patient biomaterials are counteracted by the rise in other post-lanosterol intermediates.
Hydroxyzine Effects on Post-Lanosterol Biosynthesis in Smith-Lemli-Opitz Syndrome (SLOS) Models.
阅读:18
作者:Korade Zeljka, Anderson Allison C, Balog Marta, Tallman Keri A, Porter Ned A, Mirnics Karoly
| 期刊: | Biomolecules | 影响因子: | 4.800 |
| 时间: | 2025 | 起止号: | 2025 Apr 10; 15(4):562 |
| doi: | 10.3390/biom15040562 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
