Multilayered Tissue Assemblies Through Tuneable Biodegradable Polyhydroxyalkanoate Polymer (Mesh)-Reinforced Organ-Derived Extracellular Matrix Hydrogels.

阅读:17
作者:Getova Vasilena E, Pascual Alex, Dijkstra Rene, Gładysz Magdalena Z, Ubels Didi, Wlodarczyk-Biegun Malgorzata K, Burgess Janette K, Siebring Jeroen, Harmsen Martin C
Multi-layer cell constructs produced in vitro are an innovative treatment option to support the growing demand for therapy in regenerative medicine. Our research introduces a novel construct integrating organ-derived decellularised extracellular matrix (dECM) hydrogels and 3D-printed biodegradable polymer meshes composed of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P34HB) to support and maintain multiple layers of different cell types. We achieved that by integrating the mechanical stability of PHBV+P34HB, commonly used in the food storage industry, with a dECM hydrogel, which replicates organ stiffness and supports cellular survival and function. The construct was customised by adjusting the fibre arrangement and pore sizes, making it a suitable candidate for a personalised design. We showed that the polymer is degradable after precoating it with PHB depolymerase (PhaZ), with complete degradation achieved in 3-5 days and delayed by adding the hydrogel to 10 days, enabling tuneable degradation for regenerative medicine applications. Finally, as a proof of concept, we composed a three-layered tissue in vitro; each layer represented a different tissue type: epidermal, vascular, and subcutaneous layers. Possible future applications include wound healing and diabetic ulcer paths, personalised drug delivery systems, and personalised tissue implants.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。