In the last decade, among the emerging technologies in the area of bioplastics, additive manufacturing (AM), commonly referred to as 3D printing, stands out. This technology has gained great interest in the development of new products, mainly due to its capability to easily produce customized and low-cost plastic products. This work aims to evaluate the effect of supercritical foaming of 3D-printed parts based on a commercial PLA matrix loaded with calcium carbonate, for single-use sustainable food contact materials. 3D-printed PLA/CaCO(3) parts were obtained by 3D printing with a 20% and 80% infill, and two infill patterns, rectilinear and triangular, were set for each of the infill percentages selected. Supercritical fluid foaming of PLA/CaCO(3) composite printed parts was performed using a pressure of 25 MPa, a temperature of 130 °C for 23 min, with a fast depressurization rate (1 s). Closed-cell foams were achieved and the presence of CaCO(3) did not influence the surface of the foams or the cell walls, and no agglomerations were observed. Foam samples with 80% infill showed subtle temperature fluctuations, and thermogravimetric analysis showed that samples were thermally stable up to ~300 °C, while the maximum degradation temperature was around 365 °C. Finally, tensile test analysis showed that for lower infill contents, the foams showed lower mechanical performance, while the 80% infill and triangular pattern produced foams with good mechanical performance. These results emphasize the interest in using the supercritical CO(2) process to easily produce foams from 3D-printed parts. These materials represent a sustainable alternative for replacing non-biodegradable materials such as Expanded Polystyrene, and they are a promising option for use in many industrial applications, such as contact materials.
Foaming of 3D-Printed PLA/CaCO(3) Composites by Supercritical CO(2) Process for Sustainable Food Contact Materials.
阅读:3
作者:Faba Simón, Agüero Ãngel, Arrieta Marina P, MartÃnez Sara, Romero Julio, Torres Alejandra, Galotto MarÃa José
| 期刊: | Polymers | 影响因子: | 4.900 |
| 时间: | 2024 | 起止号: | 2024 Mar 13; 16(6):798 |
| doi: | 10.3390/polym16060798 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
