Unrestricted Ketogenic Diet Feeding Enhances Epithelial Ovarian Cancer Growth In Vivo.

阅读:9
作者:AlHilli Mariam M, Rhoades Emily E, Chau Danielle, Tewari Surabhi, Reich Adrian, Myers Alex, Lindner Daniel J, Lathia Justin D, Zhang Renliang, Willard Belinda, Cresci Gail, Berger Nathan A, Reizes Ofer
The ketogenic diet (KD) is hypothesized to impact tumor progression by altering tumor metabolism. In this study, we assessed the impact of an unrestricted KD on epithelial ovarian cancer (EOC) tumor growth, gene expression, and metabolite concentration in a mouse model. ID8 EOC cells, which were syngeneic with C57Bl/6J mouse strain and transfected with luciferase (ID8-luc), were injectedand monitored for tumor development. Female mice were fed either a strict KD, a high fat/low carbohydrate (HF/LC) diet, or a low fat/high carbohydrate (LF/HC) diet (n = 10 mice per group) ad libitum. EOC tumor growth was monitored weekly, and tumor burden was determined based on luciferase fluorescence (photons/second). At the endpoint (42 days), tumors were collected and processed for RNA sequencing. Plasma and tumor metabolites were evaluated using LC-MS. The KD-fed mice exhibited a statistically significant increase in tumor progression in comparison to the HF/LC- and LF/HC-fed groups (9.1 vs. 2.0 vs. 3.1-fold, respectively, p < 0.001). The EOC tumors of the KD-fed mice exhibited significant enrichment of the peroxisome proliferator-activated receptor (PPAR) signaling and fatty acid metabolism pathways based on the RNA sequencing analysis when compared to the LF/HC- and HF/LC-fed mice. Thus, unrestricted KD diet enhanced tumor progression in our mouse EOC model. KD was associated with the upregulation of fatty acid metabolism and regulation pathways, as well as enrichment of fatty acid and glutamine metabolites.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。