Characterizing the protospacer adjacent motif (PAM) requirements of different Cas enzymes is a bottleneck in the discovery of Cas proteins and their engineered variants in mammalian cell contexts. To overcome this challenge and to enable more scalable characterization of PAM preferences, we develop a method named GenomePAM that allows for direct PAM characterization in mammalian cells. GenomePAM leverages genomic repetitive sequences as target sites and does not require protein purification or synthetic oligos. GenomePAM uses a 20-nt protospacer that occurs ~16,942 times in every human diploid cell and is flanked by nearly random sequences. We demonstrate that GenomePAM can accurately characterize the PAM requirement of type II and type V nucleases, including the minimal PAM requirement of the near-PAMless SpRY and extended PAM for CjCas9. Beyond PAM characterization, GenomePAM allows for simultaneous comparison of activities and fidelities among different Cas nucleases on thousands of match and mismatch sites across the genome using a single gRNA and provides insight into the genome-wide chromatin accessibility profiles in different cell types.
GenomePAM directs PAM characterization and engineering of CRISPR-Cas nucleases using mammalian genome repeats.
阅读:8
作者:Zheng Zongli, Yu Miao, Ai Limei, Wang Bang, Lian Shifeng, Liu James, Li Linxian, Tsai Shengdar, Kleinstiver Benjamin, Ip Lawrence
| 期刊: | Res Sq | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 Jun 17 |
| doi: | 10.21203/rs.3.rs-4552906/v1 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
