Enhancing production and assessing IgE reactivity of dog allergen Can f 6 in Pichia pastoris and Escherichia coli.

阅读:18
作者:Dvareckienė Juta, Žvirblis Gintautas, Zaveckas Mindaugas, Petraitytė-Burneikienė Rasa
Pet allergies are increasingly prevalent in developed nations, significantly affecting humans and strongly linked with asthma and rhinitis. Allergic reactions to cats and dogs affect 15.7% of Americans and 27.2% of Europeans, with sensitization rates to dog allergens reaching 56.0% in Denmark. Despite these concerns, dog ownership remains widespread, with 25% of European and 45.5% of US households owning at least one dog. With sensitization on the rise and current diagnostic and therapeutic approaches predominantly relying on inherently inconsistent allergen extracts derived from natural sources, recombinant allergen production offers a pathway to component-resolved diagnostics, improving specificity and reliability in allergy diagnosis. The present research explored, for the first time, the production of the allergen component glycoprotein Can f 6 in the eukaryotic expression system Pichia pastoris and compared its IgE antigenicity to recombinant Can f 6 (rCan f 6) variants produced in Escherichia coli. Yields were significantly increased by fusing Can f 6 with the maltose binding protein (MBP), resulting in a 1.8-fold increase in production in E. coli and a threefold increase in P. pastoris. Antigenicity analysis showed that N-glycosylation is not critical for folding or IgE recognition of Can f 6, making both systems equally suitable for producing the allergen. Notably, P. pastoris-produced MBP fused protein purified through cation exchange chromatography yielded a lower protein quantity. Still, it exhibited stronger IgE reactivity than the same protein purified using anion exchange chromatography.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。