The contribution of dietary and plasma folate and cobalamin to levels of angiopoietin-1, angiopoietin-2 and Tie-2 receptors depend on vascular endothelial growth factor status of primary breast cancer patients.

阅读:8
作者:Pirouzpanah Saeed, Varshosaz Parisa, Fakhrjou Ashraf, Montazeri Vahid
The aim of this study was to determine the association of dietary folate and cobalamin with plasma levels of Angiopoietins (ANG), vascular endothelial growth factor-C (VEGF-C) and tyrosine kinase receptor-2 (Tie-2) of primary breast cancer patients. Women (n = 177), aged 30 to 75 years diagnosed with breast cancer were recruited from an ongoing case series study. Dietary intake of nutrients was estimated by using a validated food frequency questionnaire. Enzyme-linked immunosorbent assay was applied to measure biomarkers. MCF-7 cell cultures were supplemented with folic acid (0-40 μM) for 24 h to measure cell viability and fold change of expression by the real-time reverse transcriptase-polymerase chain reaction. Structural equation modeling was applied to analyze the structural relationships between the measured variables of nutrients and Angiopoietins. Dietary intake of folate and cobalamin showed a significant inverse correlation with plasma ANG-1 and ANG-2 (P < 0.05), particularly in subjects with estrogen-receptor positive tumors or low plasma VEGF-C. Plasma folate was positively associated with the ratio of ANG-1/ANG-2 (P < 0.05). Residual intake levels of total cobalamin were inversely associated with plasma ANG-1 when plasma stratum of VEGF-C was high (P < 0.05). Structural equation modeling identified a significant inverse contribution of folate profiles on the latent variable of Angiopoietins (coefficient β = -0.99, P < 0.05). Folic acid treatment resulted in dose-dependent down-regulations on ANGPT1 and ANGPT1/ANGPT2 ratio but VEGF and ANGPT2/VEGF were upregulated at folic acid >20 μM. Studying the contributing role of dietary folate to pro-angiogenic biomarkers in breast cancer patients can infer the preventive role of folate in the ANGs/VEGF-C-dependent cascade of tumor metastasis. By contrast, high concentrations of folic acid in vitro supported VEGF-C-dependent ANGPT2 overexpression might potentiate micro-lymphatic vessel development to support malignant cell dissemination.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。