Effect of Medium-Chain-Length Alkyl Silane Modified Nanocellulose in Poly(3-hydroxybutyrate) Nanocomposites.

阅读:10
作者:Uşurelu Cătălina Diana, Panaitescu Denis Mihaela, Oprică Gabriela Mădălina, Nicolae Cristian-Andi, Gabor Augusta Raluca, Damian Celina Maria, Ianchiş Raluca, Teodorescu Mircea, Frone Adriana Nicoleta
Poly (3-hydroxybutyrate) (PHB) is a valuable biopolymer that is produced in industrial quantity but is not widely used in applications due to some drawbacks. The addition of cellulose nanofibers (CNF) as a biofiller in PHB/CNF nanocomposites may improve PHB properties and enlarge its application field. In this work, n-octyltriethoxy silane (OTES), a medium-chain-length alkyl silane, was used to surface chemically modify the CNF (CNF_OTES) to enhance their hydrophobicity and improve their compatibility with PHB. The surface functionalization of CNF and nanodimension were emphasized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, thermogravimetric analysis, atomic force microscopy, dynamic light scattering, and water contact angle (CA). Surface modification of CNF with OTES led to an increase in thermal stability by 25 °C and more than the doubling of CA. As a result of the higher surface hydrophobicity, the CNF_OTES were more homogeneously dispersed in PHB than unmodified CNF, leading to a PHB nanocomposite with better thermal and mechanical properties. Thus, an increase by 122% of the storage modulus at 25 °C, a slight increase in crystallinity, a better melting processability, and good thermal stability were obtained after reinforcing PHB with CNF_OTES, paving the way for increasing PHB applicability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。