Synthesis and Characterization of Temperature- and pH-Responsive PIA-b-PNIPAM@Fe(3)O(4) Nanocomposites.

阅读:21
作者:Kumari Swati, Cook Cayla, Tarannum Fatema, Vasquez-Guardado Erick S, Ogunjimi Olufemi, Walters Keisha B
Stimuli-responsive polymers (SRPs) have garnered significant attention in recent decades due to their immense potential in biomedical and environmental applications. When these SRPs are grafted onto magnetic nanoparticles, they form multifunctional nanocomposites capable of various complex applications, such as targeted drug delivery, advanced separations, and magnetic resonance imaging. In this study, we employed a one-step hydrothermal method using 3-aminopropyltrimethoxysilane (APTES) to synthesize APTES-modified Fe(3)O(4) nanoparticles (APTES@Fe(3)O(4)) featuring reactive terminal amine groups. Subsequently, via two consecutive surface-initiated atom transfer radical polymerizations (SI-ATRP), pH- and temperature-responsive polymer blocks were grown from the Fe(3)O(4) surface, resulting in the formation of poly(itaconic acid)-block-poly(N-isopropyl acrylamide) (PIA-b-PNIPAM)-grafted nanomagnetic particles (PIA-b-PNIPAM@Fe(3)O(4)). To confirm the chemical composition and assess how the particle morphology and size distribution of these SRP-based nanocomposites change in response to ambient pH and temperature stimuli, various characterization techniques were employed, including transmission electron microscopy, differential light scattering, and Fourier transform infrared spectroscopy. The results indicated successful synthesis, with PIA-b-PNIPAM@Fe(3)O(4) demonstrating sensitivity to both temperature and pH.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。