In drylands, microalgae dwelling in the biocrust are inevitably confronted with nitrogen deficiency and desiccation stress, despite the protection afforded by the soil biological complex. However, the environmental adaptive features and mechanisms of these microalgae remain largely unknown. In this study, we explored the adaptive changes of a biocrust-derived unicellular microalga, Vischeria sp. WL1 (Eustigmatophyceae), in the face of long-term nitrogen deficiency. Attention was focused on the alterations in cell wall properties and the associated desiccation resistance. After exposure to long-term nitrogen deficiency, the cell walls of Vischeria sp. WL1 thickened substantially, accompanied by enhanced rigidity and an improvement in desiccation resistance. In contrast, Vischeria sp. WL1 cells cultivated under nitrogen-replete conditions were highly vulnerable to desiccation stress. Additional cell wall alterations after nitrogen starvation included distinct surface sculpturing, variations in monosaccharide composition, and changes in functional groups. Collectively, this study provides valuable insights into the survival strategies of biocrust-derived microalgae in nitrogen-deficient dryland environments.
Adaptation to Long-Term Nitrogen Starvation in a Biocrust-Derived Microalga Vischeria sp. WL1: Insights into Cell Wall Features and Desiccation Resistance.
阅读:5
作者:Liang Wensheng, Gao Xiang, She Yang, Jing Xin, Yuan Xiaolong, Zhu Derui
| 期刊: | Microorganisms | 影响因子: | 4.200 |
| 时间: | 2025 | 起止号: | 2025 Apr 14; 13(4):903 |
| doi: | 10.3390/microorganisms13040903 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
