Quantitative Evaluation of Nucleic Acid Degradability of Copper Alloy Surfaces and Its Correlation to Antibacterial Activity.

阅读:8
作者:Yamamoto Akiko, Tanaka Shinji, Ohishi Keiichiro
Copper (Cu) and its alloys have bactericidal activity known as "contact killing" with degradation of nucleic acids inside the bacteria, which is beneficial to inhibit horizontal gene transfer (HGF). In order to understand the nucleic acid degradability of Cu and its alloy surfaces, we developed a new in vitro method to quantitatively evaluate it by a swab method under a "dry" condition and compared it with that of commercially available antibacterial materials such as antibacterial stainless steel, pure silver, and antibacterial resins. As a result, only Cu and its alloys showed continuous degradation of nucleic acids for up to 6 h of contact time. The nucleic acid degradability levels of the Cu alloys and other antibacterial materials correlate to their antibacterial activities evaluated by a film method referring to JIS Z 2801:2012 for Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. Nucleic acid degradation by copper (I) and (II) chlorides was confirmed at the ranges over 10 mM and 1-20 mM, respectively, suggesting that the copper ion release may be responsible for the degradation of the nucleic acids on Cu and its alloy surfaces. In conclusion, the higher Cu content in the alloys gave higher nucleic acid degradability and higher antibacterial activities.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。