Exploiting Plasma Exposed, Natural Surface Nanostructures in Ramie Fibers for Polymer Composite Applications.

阅读:2
作者:Hamad Sameer F, Stehling Nicola, Hayes Simon A, Foreman Joel P, Rodenburg C
Nanoscale surface morphology of plant fibers has important implications for the interfacial bonding in fiber-polymer composites. In this study, we investigated and quantified the effect of plasma-surface modification on ramie plant fibers as a potential tool for simple and efficient surface modification. The extensive investigation of the effects of plasma treatment of the fiber surface nano-morphology and its effect on the fiber-polymer interface was performed by Low-Voltages Scanning Electron Microscopy (LV-SEM), infrared spectroscopy (FT-IR) analysis, fiber-resin angle measurements and mechanical (tensile) testing. The LV-SEM imaging of uncoated plasma treated fibers reveals nanostructures such as microfibrils and elementary fibrils and their importance for fiber mechanical properties, fiber wettability, and fiber-polymer matrix interlocking which all peak at short plasma treatment times. Thus, such treatment can be an effective in modifying the fiber surface characteristics and fiber-polymer matrix interlocking favorably for composite applications.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。