Exploiting Plasma Exposed, Natural Surface Nanostructures in Ramie Fibers for Polymer Composite Applications.

阅读:7
作者:Hamad Sameer F, Stehling Nicola, Hayes Simon A, Foreman Joel P, Rodenburg C
Nanoscale surface morphology of plant fibers has important implications for the interfacial bonding in fiber-polymer composites. In this study, we investigated and quantified the effect of plasma-surface modification on ramie plant fibers as a potential tool for simple and efficient surface modification. The extensive investigation of the effects of plasma treatment of the fiber surface nano-morphology and its effect on the fiber-polymer interface was performed by Low-Voltages Scanning Electron Microscopy (LV-SEM), infrared spectroscopy (FT-IR) analysis, fiber-resin angle measurements and mechanical (tensile) testing. The LV-SEM imaging of uncoated plasma treated fibers reveals nanostructures such as microfibrils and elementary fibrils and their importance for fiber mechanical properties, fiber wettability, and fiber-polymer matrix interlocking which all peak at short plasma treatment times. Thus, such treatment can be an effective in modifying the fiber surface characteristics and fiber-polymer matrix interlocking favorably for composite applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。