Microaggregates as Nutrient Reservoirs for Fungi Drive Natural Regeneration in Larch Plantation Forests.

阅读:5
作者:Lin Yiping, Wang Kefan, Wang Zilu, Fang Xin, Wang Haomin, Li Nuo, Shi Cong, Shi Fuchen
The natural regeneration of Larix gmelinii plantations plays a pivotal role in rehabilitating ecosystem services in Northeast China's degraded forests. However, mechanistic linkages between soil aggregate nutrient fluxes and fungal community assembly remain poorly constrained. Combining space-for-time substitution with particle-size fractionation and high-throughput sequencing, this study examined successional trajectories across regeneration in Langxiang National Nature Reserve to resolve nutrient-fungal interplay during long-term forest restructuring. The results demonstrated that microaggregates (<0.25 mm) functioned as nutrient protection reservoirs, exhibiting significantly higher total carbon (TC) and nitrogen (TN) contents and greater fungal diversity (p < 0.05). Both stand regeneration stage and aggregate size significantly influenced fungal community composition and structural organization (p < 0.05). Aggregate-mediated effects predominated in upper soil horizons, where fungal dominance progressively transitioned from Mortierellomycota to Ascomycota with increasing particle size. In contrast, lower soil layers exhibited regeneration-dependent dynamics: Basidiomycota abundance declined with L. gmelinii reduction, followed by partial recovery through mycorrhizal reestablishment in Pinus koraiensis broadleaf communities. Fungal co-occurrence networks displayed peak complexity during Juglans mandshurica germination (Node 50, Edge 345), with 64.6%positive correlations, indicating the critical period for functional synergy. Basidiomycota showed significant negative correlations with nutrients and major fungal phyla (R(2) = 0.89). This study confirms that natural vegetation regeneration reshapes belowground processes through litter inputs and mycorrhizal symbiosis, while microaggregate management enhances soil carbon sequestration. Near-natural plantation management should incorporate broadleaf species to preserve mycorrhizal diversity and amplify ecosystem services. These findings provide an essential soil ecological theoretical basis for sustainable plantation management in Northeast China.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。