Polyploidy, characterized by an increase in the number of whole sets of chromosomes in an organism, offers a promising avenue for cannabis improvement. Polyploid cannabis plants often exhibit altered morphological, physiological, and biochemical characteristics with a number of potential benefits compared to their diploid counterparts. The optimization of polyploidy induction, such as the level of antimitotic agents and exposure duration, is essential for successful polyploidization to maximize survival and tetraploid rates while minimizing the number of chimeric mixoploids. In this study, three classification-based machine learning algorithms-probabilistic neural network (PNN), support vector classification (SVC), and k-nearest neighbors (KNNs)-were used to model ploidy levels based on oryzalin concentration and exposure time. The results indicated that PNN outperformed both KNNs and SVC. Subsequently, PNN was combined with a genetic algorithm (GA) to optimize oryzalin concentration and exposure time to maximize tetraploid induction rates. The PNN-GA results predicted that the optimal conditions were a concentration of 32.98 µM of oryzalin for 17.92 h. A validation study testing these conditions confirmed the accuracy of the PNN-GA model, resulting in 93.75% tetraploid induction, with the remaining 6.25% identified as mixoploids. Additionally, the evaluation of morphological traits showed that tetraploid plants were more vigorous and had larger leaf sizes compared to diploid or mixoploid plants in vitro.
Machine Learning-Aided Optimization of In Vitro Tetraploid Induction in Cannabis.
阅读:5
作者:Jafari Marzieh, Paul Nathan, Hesami Mohsen, Jones Andrew Maxwell Phineas
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2025 | 起止号: | 2025 Feb 18; 26(4):1746 |
| doi: | 10.3390/ijms26041746 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
