RSM and AI based machine learning for quality by design development of rivaroxaban push-pull osmotic tablets and its PBPK modeling.

阅读:15
作者:Saleem Muhammad Talha, Shoaib Muhammad Harris, Yousuf Rabia Ismail, Siddiqui Fahad
The study is based on applying Artificial Neural Network (ANN) based machine learning and Response Surface Methodology (RSM) as simultaneous bivariate approaches in developing controlled-release rivaroxaban (RVX) osmotic tablets. The influence of different types of polyethylene oxide, osmotic agents, coating membrane thickness, and orifice diameter on RVX release profiles was investigated. After obtaining the trial formulation data sets from Central Composite Design (CCD), an ANN-based model was trained to get the optimized formulations. The Physiological-based Pharmacokinetic (PBPK) modeling of the predicted formulation was performed by GastroPlus™ to simulate in vivo plasma profiles under fasting and fed conditions. In vitro release tests showed zero-order RVX release for up to 12 h. Using graphical and numerical methods, the predicted formulation generated by the prediction profiler was cross-validated by the CCD-based optimized formulation. Analysis of Variance (ANOVA) findings revealed no significant difference between the predicted and optimized formulations and these formulations have a shelf life of 22.47 and 17.87 months, respectively. The PBPK modeling of RVX push-pull osmotic pump (PPOP) tablets suggested enhanced bioavailability in the fasted (up to 82%) and fed (up to 98.5%) state compared to immediate-release tablets. The results indicated that ANN can be effectively used for osmotic systems due to their complex nature and nonlinear interactions between dependent and independent variables.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。