Improved Classification Performance of Bacteria in Interference Using Raman and Fourier-Transform Infrared Spectroscopy Combined with Machine Learning.

阅读:6
作者:Zhang Pengjie, Xu Jiwei, Du Bin, Yang Qianyu, Liu Bing, Xu Jianjie, Tong Zhaoyang
The rapid and sensitive detection of pathogenic and suspicious bioaerosols are essential for public health protection. The impact of pollen on the identification of bacterial species by Raman and Fourier-Transform Infrared (FTIR) spectra cannot be overlooked. The spectral features of the fourteen class samples were preprocessed and extracted by machine learning algorithms to serve as input data for training purposes. The two types of spectral data were classified using classification models. The partial least squares discriminant analysis (PLS-DA) model achieved classification accuracies of 78.57% and 92.85%, respectively. The Raman spectral data were accurately classified by the support vector machine (SVM) algorithm, with a 100% accuracy rate. The two spectra and their fusion data were correctly classified with 100% accuracy by the random forest (RF) algorithm. The spectral processed algorithms investigated provide an efficient method for eliminating the impact of pollen interference.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。