To improve the problems of large interface thermal resistance and low heat dissipation efficiency in battery thermal management (BTM), this paper uses methyl silicone oil as the matrix, AIN, copper powder (CP), and carbon fiber (CF) as thermally conductive fillers, and acetone and stearic acid as particle surface modification components. A variety of binary thermal silicone greases (TSGs) with different compositions were prepared. Different instruments were used to test the material properties of TSGs, and a better TSG was selected to coat the interface between battery and phase change material (PCM) for battery charging and discharging experiments. Through the analysis of experimental data, it was found that among the TSGs made of three mixed fillers (AIN/CP, AIN/CF, CP/CF), the three TSGs had good thermal stability, and their thermal degradation temperature both exceeded 300 °C. As the ratio of thermally conductive filler was gradually changed from 5:1 to 1:5, the TSG containing CP/CF had higher thermal conductivity and lower volume resistivity, while the TSG containing AIN/CF had the least damage due to interface wear. The acidification treatment of thermally conductive filler can improve the adsorption and compatibility of thermally conductive particles and silicone oil, and reduce the oil separation rate of TSGs. The prepared expanded graphite (EG)/paraffin wax (PW) composite phase change material (CPCM) has a relatively large latent heat of phase change, which can effectively control the temperature of the battery, but coating TSG between the battery and the CPCM can further enhance the heat dissipation effect of the battery.
Preparation of Binary Thermal Silicone Grease and Its Application in Battery Thermal Management.
阅读:2
作者:Liu Ziqiang, Huang Juhua, Cao Ming, Jiang Guiwen, Hu Jin, Chen Qiang
| 期刊: | Materials | 影响因子: | 3.200 |
| 时间: | 2020 | 起止号: | 2020 Oct 26; 13(21):4763 |
| doi: | 10.3390/ma13214763 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
